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Abstract

We propose a novel technique of combin-
ing multiple subword tokenizations of a
single source-target language pair for use
with multilingual neural translation train-
ing methods. These alternate segmenta-
tions function like related languages in
multilingual translation, improving trans-
lation accuracy for low-resource languages
and producing translations that are lex-
ically diverse and morphologically rich.
We also introduce a cross-teaching tech-
nique which yields further improvements
in translation accuracy and cross-lingual
transfer between high- and low-resource
language pairs. Compared to other strong
multilingual baselines, our approach yields
average gains of +1.7 BLEU across the
four low-resource datasets from the multi-
lingual TED-talks dataset. Our technique
does not require additional training data
and is a drop-in improvement for any ex-
isting neural translation system.

1 Introduction

Multilingual neural machine translation (NMT,
Dong et al. 2015; Johnson et al. 2017) models are
capable of translating from multiple source and
target languages. Besides allowing efficient pa-
rameter sharing (Aharoni et al., 2019) these mod-
els facilitate inherent transfer learning (Zoph et al.,
2016; Firat et al., 2016) that can especially bene-
fit low resource languages (Nguyen and Chiang,
2017; Gu et al., 2018; Neubig and Hu, 2018;
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Tan et al., 2019). A common technique to ad-
dress lexical sharing and complex morphology in
multilingual NMT is to decompose longer words
into shorter subword units (Sennrich et al., 2016).
Since subword units are produced using heuris-
tic methods, not all subwords are created equally.
This can put low- and extremely low-resource lan-
guages at a disadvantage, even when these lan-
guages are paired with a suitable high resource lan-
guage. To diminish the impact of rare subwords
in NMT, Kambhatla et al. (2022) leverage cipher-
texts to augment the training data by constructing
multiple-views of the source text. “Soft” decom-
position methods based on transfer learning (Wang
et al., 2018) address the problem of sub-optimal
word segmentation with shared character-level lex-
ical and sentence representations across multiple
source languages (Gu et al., 2018). Wang et al.
(2021) addressed this problem with a multiview-
subword regularization technique that also im-
proves the effectiveness of cross-lingual transfer
in pretrained multilingual representations by si-
multaneously finetuning on different input seg-
mentations from a heuristic and a probabilistic to-
kenizer. While subword-regularization methods
(Kudo, 2018; Provilkov et al., 2020) have been
widely explored in NMT, this work is the first
to study them together with multilingual training
methods.

Concretely, we construct pairs of “related lan-
guages” by segmenting an input corpus twice, each
time with a different vocabulary size and algorithm
for finding subwords; we use these “languages”
(really, views of the same language) for multi-
lingual training of an NMT model. We propose
Multi-Sub training, a method that combines multi-
lingual NMT training methods with a diverse set
of auxiliary subword segmentations which func-



На@@ тура@@ льна , мы працуем , мы рых@@ ту@@ ем
настаўні@@ каў . Мы выкла@@ даем правы жанчын ,
правы чалавека , прынцы@@ пы дэ@@ ма@@ кра@@
ты@@ і , права@@ пара@@ дак . Мы право@@ дзім
разнастай@@ ныя трэні@@ н@@ гі . 

▁На тура льна ▁, ▁мы ▁працу ем ▁, ▁мы ▁ры х ту ем
▁настаў нікаў ▁. ▁Мы ▁вы клада ем ▁пра вы ▁жанчын
▁, ▁пра вы ▁чалавека ▁, ▁прынцы пы ▁дэ ма кра ты і 
▁, ▁права пара дак ▁. ▁Мы ▁праводзі м ▁разнастай ныя
▁трэ ні н гі ▁.

But of course , we &apos;re doing all our work , we were giving
teacher training . We were training women &apos;s rights ,
human rights , de@@ mo@@ cr@@ acy , rule of law . We
were giving all kind@@ s of training . 

▁But ▁of ▁course ▁, ▁we ▁& apos ; re ▁doing ▁all ▁our
▁work ▁, ▁we ▁were ▁giving ▁teach er ▁train ing ▁. ▁We
▁were ▁train ing ▁women ▁& apos ; s ▁right s ▁, ▁human
▁right s ▁, ▁dem oc r acy ▁, ▁r ule ▁of ▁law ▁. ▁We
▁were ▁giving ▁all ▁kinds ▁of ▁train ing ▁. 
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BPEBPE
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Figure 1: An illustration of the interaction between the primary (BPE) and auxiliary (SP) subwords for the same sample from
the be-en dev set where each type of segmentation is treated as a separate language. The model is taught to translate into
a specific segmentation via multilingual training using the target “language” tags [2bpe] and [2sp]. The sentence in bold
type font shows both variants of the source sentence translating to the same target sentence. The colored spans show different
segmentations of the same word(s) in source/target.

tion like related languages in a multilingual setting
since they have distinct but partially-overlapping
vocabularies and share the same underlying lexi-
cal and grammatical features. Our model is able to
transfer information between segmentations analo-
gous to the way information is transferred between
typologically similar languages.

We also introduce a cross-teaching technique in
which a model is trained to translate source sen-
tences from one subword tokenization into target
sentences from a different subword tokenization.
By using Multi-Sub training together with cross-
teaching, we obtain strong results on four low-
resource languages in the multilingual TED talks
dataset outperforming strong multilingual base-
lines, with the most significant improvements in
the lowest-resource languages. In addition to im-
proving the BLEU scores, our technique captures
word compositionality better leading to improved
lexical diversity and morphological richness in the
target language. Multi-Sub with cross-teaching is
better at clustering different languages in the sen-
tence embedding space than previous methods in-
cluding Multi-Sub without cross-teaching.

2 Auxiliary Segmentation as a Related
Language

Pairing related languages is common in multilin-
gual NMT1: Nguyen and Chiang (2017) combine
Uzbek/Turkish and Uzbek/Uyghur; Johnson et al.
(2017) study multilingual translation to and from
English with pairs such as Spanish/Portuguese or
Japanese/Korean. Neubig and Hu (2018) pair low
resource languages like Azerbaijani with a related
1Here we do not distinguish between languages which are re-
lated in the linguistic sense (having some genetic affiliation)
and those which are related in a more pragmatic sense of hav-
ing high lexical overlap.

“helper” language like Turkish.
We take these techniques as motivation for the

present work. Our principal contribution is to re-
think what it means to use “related” languages in
a multilingual translation model. Beyond simply
employing other languages from the same fam-
ily, or those with high lexical overlap, we show
that a model trained on different segmentations of
the same language can produce improvements in
translation quality.

Rather than segmenting a corpus with a single
tokenizer prior to training a translation model, we
produce multiple segmentations using different to-
kenizers. Consider the example sentences in Fig-
ure 1. On both the source and target sides, the same
sentence is represented using both Byte-pair En-
codings (BPEs, Sennrich et al. 2016, with a “@@”
separator) and in parallel as sentencepieces (SP,
Kudo 2018, with a “ ” separator). Each segmenta-
tion uses a different vocabulary size, which guar-
antees that their subword sequences are to some
extent distinct. The two tokenizations still resem-
ble one other in many ways: (i) they have a non-
trivial degree of lexical overlap (mostly between
subwords which do not fall along word bound-
aries); (ii) they share the same grammatical struc-
ture, as both represent the same underlying lan-
guage; and (iii) both sequences have the same se-
mantic interpretation. We thus refer to the two seg-
mentations as a pair of “related languages”.

Applying two segmentations to a parallel cor-
pus yields a total of four “languages”: the source
and target represented as BPE subwords, and the
same represented using SP subwords. We obtain
two source “languages” (each containing data from
both high and low resource languages) and two tar-
get “languages”. Using this four way configura-
tion, we train a model following a common multi-



lingual training method (Johnson et al., 2017): de-
pending on the segmentation we want to translate
into, we prepend a target token [2bpe] or [2sp]
to the source side. We explore two different multi-
lingual training configurations:

[BPE+SP]: In this setting, a source sentence in
a particular segmentation is translated into the tar-
get with the same segmentation. Specifically, this
model is trained multilingually on the pairs

BPE [src] → BPE [tgt]

SP [src] → SP [tgt]
Cross-teaching: In addition to [BPE+SP], in
this setting, each source sentence with a particu-
lar segmentation is translated into the target with
alternate segmentation. This multilingual model is
therefore trained on the following pairs:

BPE [src] → SP [tgt]

SP [src] → BPE [tgt]

Using multilingual training, our model is able to
transfer information between BPE and SP segmen-
tations in much the same way that conventional
multilingual models transfer information between
languages with a shared linguistic affiliation. Un-
like data augmentation techniques which gener-
ate synthetic training data, Multi-Sub training uses
only the content of the original training corpus.
Furthermore, contrary to other works which em-
ploy multiple segmentations (Wang et al., 2018;
Wu et al., 2020), Multi-Sub training and cross-
teaching do not affect model architecture and do
not require specialised training. Thus Multi-Sub
training can be used as a simple, drop-in improve-
ment to an existing neural translation model.

3 Experiments

3.1 Experimental Setup
Data Following prior work on low-resource and
multilingual NMT (Neubig and Hu, 2018; Wang
et al., 2018) we use the multilingual Ted talks
dataset (Qi et al., 2018). We use four low re-
source languages (LRL): Azerbaijani (az), Belaru-
sian (be), Galician (gl) and Slovak (sk), and four
high resource languages (HRL): Turkish (tr), Rus-
sian (ru), Brazilian-Portuguese (pt), and Czech
(cs). In all experiments and baselines, each LRL
is paired with the related HRL and English is the
target language.

Table 1 shows general statistics for each dataset.
Based on the size of the training data, we consider
az, be and gl as extremely low-resource while sk is
a slightly higher-resource dataset.

LRL #train #dev #test HRL #train

az 5.9k 671 903 tr 182k
be 4.5k 248 664 ru 208k
gl 10.0k 682 1007 pt 185k
sk 61.5k 2271 2445 cs 103k

Table 1: Statistics from our low resource language (LRL) and
high resource language (HRL) datasets.

Model Details Our model comprises a single
bi-directional LSTM as encoder and decoder,
with 128-dimensional word embeddings and 512-
dimensional hidden states. We are careful to
keep this configuration consistent with our base-
line model (Neubig and Hu, 2018) to ensure a fair
comparison. We use fairseq2 to implement the
baseline as well as our proposed models. We set
dropout probability to 0.3, and use an adam opti-
mizer with a learning rate of 0.001. In practice,
we train a Multi-Sub model until convergence,
and then use this model to continue training on
cross-teaching data until convergence. For infer-
ence, we use beam size 5 with length penalty. We
use sacrebleu3 (Post, 2018) to report BLEU
(Papineni et al., 2002) scores on the detokenized
translations. We perform statistical significance
tests for our results based on bootstrap resampling
(Koehn, 2004) using compare-mt toolkit4.

For fair comparison with prior work, we use
BPE (Subword-nmt, Sennrich et al. 2016) as our
primary segmentation toolkit and sentencepiece
(SP, Kudo 2018) as our auxiliary tokenizer. We
only use the BPE segmentations to tune our model
via validation. In other words, while we train on
both BPE and SP, we save model checkpoints that
are optimized for BPE tokenized inputs5.

Following Neubig and Hu (2018), we separately
learn 8k BPE subwords on each of the source and
target languages. When combining an LRL and a
HRL, we take the union of the vocabulary on the
source side and the target side separately. We use
the same procedure with the SP tokenizer using a
subword vocabulary size of 4k. To train BPE and
SP together, we take the union of the vocabularies

2https://github.com/pytorch/fairseq
3SacreBLEU signature: BLEU+CASE.MIXED+NUMREFS.1
+SMOOTH.EXP+TOK.13A+VERSION.1.4.14
4https://github.com/neulab/compare-mt
5Our model can handle sentencepiece inputs as well. For a
model that performs equally well on BPE and SP, construct
a validation set with equal number of source sentences with
both segmentations and save the checkpoints optimized for
the validation metric. We chose BPE segments for validation
to be comparable with previous work.



Lex Unit Model tr/az ru/be pt/gl cs/sk

Word Lookup 7.66 13.03 28.65 25.24
Sub-joint Lookup 9.40 11.72 22.67 24.97
Sub-sep UniEnc (Gu et al., 2018) 4.80 8.13 14.58 12.09

Sub-sep Lookup (Neubig and Hu, 2018)6 10.8 16.2 27.7 28.4
Sub-sep Adaptation (All→Bi) (ibid.) 11.7 18.3 28.8 28.2

Word SDE (Wang et al., 2018) 11.82 18.71 30.30 28.77
Sub-sep SDE (ibid.) 12.35 16.30 28.94 28.35

Multi-Sub Lookup [BPE + SP] (Ours) 12.0∗ 18.5∗∗ 28.6∗ 28.8†

(BPE 8k + SP 4k) Lookup + Cross-teaching (Ours) 12.7∗∗ 18.8∗∗ 29.6∗∗ 28.6†

Table 2: All models are trained on a LRL and a related HRL with English as the target language with LSTMs. BLEU scores
are reported on the test set of the LRL. The sub-sep lookup model (Neubig and Hu, 2018) is our primary baseline (shaded in
grey). Our best results compared to the baseline are underlined. Bolding indicates best overall results on the datasets. We
indicate statistical significance w.r.t primary baseline with † (p < 0.05), ∗ (p < 0.001) and ∗∗ (p < 0.0001).

of the source and target sides separately, resulting
in a vocabulary which is union of the BPE and SP
subword vocabularies of each side.

3.2 Main results

We compare the results of our Multi-Sub models
against various baselines in Table 2. Sub-sep mod-
els use a union of subword vocabularies learned
separately for each of the source and target lan-
guages; the union is performed separately for the
source and target sides yielding two separate vo-
cabularies. Sub-joint refers to subword vocabular-
ies learned jointly on the concatenation of all of
the source and target languages. Such models con-
sistently perform worse than their sub-sep counter-
parts for all datasets, as the HRL tends to occupy a
larger share of the vocabulary and leaves the LRL
with both a smaller vocabulary as well as smaller
subwords. Our reimplementation of the sub-sep
model (Neubig and Hu, 2018) mitigates this by
(separately) learning the same number of subwords
for the HRL and LRL. Using words instead of sub-
words performs on par with the sub-sep model for
gl → en but worse for other languages.

We see that our model, Multi-Sub, handily out-
performs all of these baselines. Compared to
the de-facto sub-sep model (highlighted in grey,
and used as the baseline in the rest of the pa-
per), Multi-Sub without cross-teaching gains +1.2
BLEU points on az and be, and +0.9 on gl. The
improvement on cs is not large, but is significant
at +0.4 BLEU.

We also compare our approach against more so-
phisticated models, such as soft decoupled encod-
ing (SDE, Wang et al. 2018) which shares lexi-
cal and latent semantic representations across mul-
tiple source languages. Our modest Multi-Sub

model with cross-teaching outperforms SDE (with
words as lexical units) on three out of four lan-
guages, with the largest gain being +0.9 BLEU
on az → en. Multi-Sub consistently and signif-
icantly outperforms subword-level SDE on all lan-
guage pairs with gains ranging from +0.4 BLEU to
+2.5 BLEU. Note that although Multi-Sub is -0.7
BLEU behind word-level SDE on gl, it outper-
forms sub-sep by +2.6 BLEU and subword-level
SDE by +2.5 BLEU.

Overall, our models are consistently better than
the sub-sep baseline. For most languages, substan-
tial improvements over the baseline come when the
Multi-Sub model is combined with cross-teaching.

3.3 Comparison with Subword
Regularization

Table 3 contrasts Multi-Sub against BPE-dropout
(Provilkov et al., 2020), a subword regularization
technique.7 For comparison we report results from
the baseline sub-sep model with and without sub-
word regularization. Our implementation applies
BPE-dropout to the training data with probability
p = 0.1, and the model and training are otherwise
identical to sub-sep.

tr/az ru/be pt/gl cs/sk

Sub-sep 10.8 16.2 27.7 28.4
+ SR 11.0 16.6 28.4 28.2

Multi-sub 12.7 18.8 29.6 28.8

Table 3: Comparing subword regularization (SR) with our
best results. We use BPE-dropout (Provilkov et al., 2020) at
p = 0.1.

7Using only one tokenizer (either BPE or SP) with different
subword sizes closely resembles subword regularization. Us-
ing SP and BPE, on the other hand, results in different word-
boundary markers that makes our technique distinct.



Although subword regularization improves
upon the baseline model, the difference is small,
likely because of the small amount of data avail-
able for the LRLs. By contrast our Multi-Sub tech-
nique yields much larger gains.

Discussion BPE-dropout (Provilkov et al., 2020)
is a subword regularization technique that exposes
the model to learn better word compositionalities
by probabilistically producing multiple segmenta-
tions for each word. Multi-Sub, on the other hand,
uses a secondary subword segmentation of lower
vocabulary size and leverages its compositional-
ities as a related language to learn better repre-
sentations. In Multi-Sub with cross-teaching, the
model learns to produce four way translations on
the same source and target languages: BPE [src]
→ {BPE [tgt] , SP [tgt]} and SP [src] → {BPE
[tgt] , SP [tgt]}. Although this method is determin-
istic, and the model learns from only two unique
subword sequences instead of one (e.g. sub-sep),
this inter-segmentation interaction through multi-
lingual training helps the model learn better com-
positionalities and morphology. See Section 4.2
for a discussion on the linguistic complexity of the
output translations.

3.4 Choice of Auxiliary Subwords

Our primary subword tokenizer is BPE with 8000
subwords; we use sentencepiece (SP) as our auxil-
iary subword tokenizer. To choose the right auxil-
iary subword vocabulary size, we experiment with
three different sizes (6k, 4k and 2k) on tr/az and
ru/be datasets. To determine the optimal vocab-
ulary size, we focus on two key aspects of the can-
didate segmentations: translation quality and aver-
age sentence length. Figure 2 presents a summary
of our results.

On both datasets, subword vocabularies of sizes
6k and 4k yield slightly lower BLEU scores than
the baseline with 8k subwords; the drop is mini-
mal (az: 10.4 vs. 10.1, be: 15.6 vs. 15.5 for 6k
and 4k). Performance is substantially worse on the
same datasets with 2k subwords (7.2 for az and
14.1 for be) so we reject the 2k setting.

Next, we compare the average sentence lengths
in the subword-tokenized training data (both
7The numbers are from our reimplementation of Neubig and
Hu (2018). Original BLEU scores on this dataset were az:
10.9, be: 15.8, gl: 27.3, sk: 25.5 while a reimplementation
by Wang et al. (2018) yields az: 10.9, be: 16.17, gl: 28.1,
sk: 28.5. Our implementation matches the performance on all
test sets except for gl where we lag by 0.5 points.
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Figure 2: Effect of auxiliary subword vocabulary size on
BLEU (a) and sentence length (b, c) in tr/az and ru/be.

source and target sides) across different subword
vocabulary sizes. At a vocabulary size of 6k, sen-
tence length does not vary substantially from the
length found with 8k subwords (Figure 2(b, c)). 4k
subwords yield a more significant increase in sen-
tence length on both source (tr/az: +9, ru/be:
+10) and target sides for both datasets. This is
favourable since this guarantees as many new sub-
words as possible in the sentence without increas-
ing its length dramatically. On the basis of these
results, we have chosen 4k SP subwords for our
auxiliary segmentations.

4 Analysis

4.1 Correlation to Data Availability
Using a secondary subword model as a related lan-
guage yields different degrees of improvement in
different languages. We investigate whether these
variations correlate with the degree to which the
LRL is “low-resource”.

We report (Table 4) the amount of training data
available for the LRL, the word-level vocabulary
size of each LRL (vLRL), and the ratio of this size
to the vocabulary size of the corresponding HRL
(vHRL). The ratio vLRL/vHRL is directly pro-

#train vLRL
vLRL
vHRL

BLEU ∆

az 5.94k 13.1k 11.29 +1.90
be 4.50k 9.9k 11.43 +2.61
gl 10.03k 10.9k 27.69 +1.90
sk 61.50k 48.5k 80.01 +0.40

Table 4: Comparison of size of training data in LRL with the
BLEU improvements. Column 4 shows the ratio of the word
vocabularies of LRL (vLRL) to HRL (vHRL). The ratios are
multiplied by 100 for readability.



Model BLEU TTR RTTR LTTR MTTR ↓ HD-D MTLD MTLD-A MTLD-Bi Yule’s K ↓

Az→En Reference – 0.1845 22.98 0.8248 0.0417 0.8738 106.60 108.47 108.17 80.68

1 Base 10.8 0.0855 10.9615 0.7466 0.0600 0.7750 33.9342 38.3466 38.1259 170.4321
2 BPE 8k + SP 4k 12.0 0.0971 12.2866 0.7591 0.0572 0.7936 40.0937 44.7958 44.8005 152.0778
3 2 + Cross-teach 12.7 0.0993 12.4746 0.7610 0.0569 0.7961 41.3529 45.4622 45.3590 149.4563

Be→En Reference – 0.1863 20.83 0.8219 0.0434 0.8687 102.95 104.44 104.3692 85.73

1 Base 16.2 0.1149 13.0503 0.7714 0.0556 0.8045 51.1452 52.4293 52.6571 139.7345
2 BPE 8k + SP 4k 18.5 0.1225 13.7806 0.7777 0.0542 0.8017 51.9363 52.9719 53.0382 147.5613
3 2 + Cross-teach 18.8 0.1249 14.0746 0.7799 0.0536 0.8071 54.8368 55.6391 55.7884 142.6042

Gl→En Reference – 0.1484 19.45 0.8043 0.0462 0.8643 91.22 94.81 94.67 87.92

1 Base 27.7 0.1329 17.1629 0.7924 0.0492 0.8312 72.9798 73.9316 73.8523 120.5782
2 BPE 8k + SP 4k 28.6 0.1365 17.6551 0.7952 0.0485 0.8328 76.0790 75.5915 75.5815 119.1850
3 2 + Cross-teach 29.6 0.1366 17.7624 0.7955 0.0484 0.8307 74.6902 73.7315 73.7201 112.5075

Sk→En Reference – 0.1253 25.5328 0.8047 0.0423 0.8689 95.38 102.52 102.24 86.20

1 Base 28.4 0.0935 18.9185 0.7769 0.0484 0.8383 72.7529 74.8386 74.9117 112.8484
2 BPE 8k + SP 4k 28.8 0.0954 19.3010 0.7787 0.0480 0.8411 74.5821 76.1596 76.2799 110.8807
3 2 + Cross-teach 28.6 0.0947 19.3118 0.7784 0.0480 0.8379 72.8657 74.7803 74.8770 114.8330

Table 5: Lexical diversity of the reference human translations vs. model outputs in different settings for each LRL.

portional to the number of training samples in the
LRLs. This ratio has a generally negative correla-
tion to the BLEU gains in our models—the more
training data is available, the smaller the improve-
ments. This strongly suggests that using auxiliary
subwords as a foreign language is a technique best
suited to low resource languages.

4.2 Linguistic Complexity
While estimating linguistic complexity is a mul-
tifarious task, lexical and morphological diversity
are two of its major components. In this section we
perform an exhaustive assessment of our models’
translations using lexical diversity metrics (Sec-
tion 4.2.1) and morphological inflectional diversity
metrics (Section 4.2.2).

4.2.1 Lexical Richness
We use several metrics to quantify lexical diver-
sity across translations from different models8.
The metrics include type-token ratio (TTR) and its
variants—Root TTR (RTTR, Guiraud 1960), Log
TTR (LTTR), and (MATTR, Covington and Mc-
Fall 2010)—hypergeometric distribution D (HDD,
McCarthy and Jarvis 2007), measure of textual,
lexical diversity (MTLD, McCarthy 2005) and
Yule’s K (Yule, 2014). The scores for these mea-
sures are presented in Table 5 for our model out-
puts and for the reference human translations.

On average, Multi-Sub training with cross-
teaching significantly improves the lexical diver-
sity of the generated translations. Improvements
8The intent of this section is not to claim that LD metrics are
potential indicators of proficiency, quality or sophistication;
they simply represent qualities which may be desirable for
certain applications, cf. Vanmassenhove et al. (2021)

in lexical diversity correlate with BLEU scores in
all languages (which need not be the case, cf. Van-
massenhove et al. 2021), implying that our meth-
ods produce translations which are not only more
accurate, but also richer and more varied in terms
of vocabulary. These effects are most pronounced
in the lowest-resource languages, az and be,
where cross-teaching yields improvements in ev-
ery metric relative to both the baseline and Multi-
Sub training without cross-teaching. In gl, cross-
teaching yields improvements in all metrics ex-
cept MTLD and its variants, which are optimized
by Multi-Sub training without cross-teaching. Sk
is unique in that the greatest improvements for
most metrics come from Multi-Sub training with-
out cross-teaching. This parallels the pattern ob-
served in the BLEU scores (Table 4), and confirms
our earlier claim that cross-teaching is most effec-
tive in cases of extreme data scarcity, while Multi-
Sub training without cross-teaching works better
for high resource languages.

4.2.2 Morphological Richness
To examine the morphological complexity of the
translations produced by our models, we averaged
the inflectional diversity of the lemmas. Following
Vanmassenhove et al. (2021), we used the Spacy-
udpipe lemmatizer to retrieve all lemmas9.

Shannon Entropy (H, Shannon 1948) is used to
measure the variety of inflected forms associated
with a given lemma (higher entropy means more
variation). Entropy is averaged across each lemma
in the model outputs.

9https://github.com/TakeLab/spacy-udpipe



Model BLEU H ↑ D ↓

Az→En Reference – 69.26 54.75

1 Base 10.8 64.12 59.14
2 BPE 8k + SP 4k 12.0 63.67 59.67
3 2 + Cross-teach 12.7 65.62 57.97

Be→En Reference – 71.24 53.97

1 Base 16.2 64.12 59.14
2 BPE 8k + SP 4k 18.5 67.32 67.78
3 2 + Cross-teach 18.8 67.78 57.52

Gl→En Reference – 68.27 55.88

1 Base 27.7 66.64 56.95
2 BPE 8k + SP 4k 28.6 66.93 56.95
3 2 + Cross-teach 29.6 66.20 56.92

Sk→En Reference – 69.03 55.41

1 Base 28.4 62.96 59.18
2 BPE 8k + SP 4k 28.8 63.41 58.91
3 2 + Cross-teach 28.6 62.50 59.37

Table 6: Morphological diversity measures comparing our
model outputs against the human references.

Simpson’s Diversity Index (D, Simpson 1949)
measures the probability that two randomly-
sampled items have the same label; large values
imply homogeneity (most items belong to the same
category). We measure morphological diversity by
computing the probability that two instances of a
given lemma represent the same inflected form.

The results in Table 6 parallel the lexical diver-
sity evaluation: in the extremely low-resource lan-
guages az and be, cross-teaching yields a clear
improvement in both the entropy and diversity in-
dex of the output translations. The model thus em-
ploys a greater variety of inflectional forms, which
provides more choices to the decoder (Vanmassen-
hove et al., 2021) (c.f. Fig. 8). In slightly higher-
resource languages like sk, the impact of cross-
teaching is less pronounced: the best diversity in-
dex is in gl, but Multi-Sub training without cross-
teaching yields the best entropy. Multi-Sub train-
ing without cross-teaching also yields the greatest
degree of morphological diversity in sk.

Model gl sk

Base 0.39 0.11
Multi-Sub/Cross-teaching 0.51∗† 0.12†

Table 7: F1 scores on zero-shot NER in sk and gl. † means
the best result comes from cross-teaching; ∗ means the best
result comes without cross-teaching.

4.3 Improved Cross-lingual Transfer

Downstream Task: NER Multi-Sub training
improves the usefulness of subword embeddings
for downstream tasks. We train NER models on pt

Gl Baseline
bpe -> bpe
sp -> sp

Gl BPE 8k + SP 4k
bpe -> bpe
sp -> sp

+ Cross-teach
bpe -> bpe
sp -> sp

(a) BPE [src]→BPE [tgt] (red) and SP [src] →SP [tgt] (blue)
Gl Baseline
bpe -> sp
sp -> bpe

Gl BPE 8k + SP 4k
bpe -> sp
sp -> bpe

+ Cross-teach
bpe -> sp
sp -> bpe

(b) BPE [src]→SP [tgt] (red) and SP [src] →BPE [tgt] (blue)

Figure 3: PCA decomposition of Galician sentence represen-
tations in the baseline (left), Multi-Sub (center), and cross-
teaching (right) settings. Multi-Sub training can reduce sep-
aration between tokenizations, while the addition of cross-
teaching eliminates separation entirely.

and cs using the pre-trained embeddings from our
translation models; then, following Sharoff 2017,
we evaluate each of these models on the corre-
sponding LRL.10 Since the NER models are never
trained on LRL data, this is a zero-shot evaluation
where model performance should reflect the de-
gree of multilinguality in the pre-trained embed-
dings. Table 7 reports F1 scores for this task.
We observe that Multi-Sub training on its own
can yield significant performance improvements
(as in gl), but cross-teaching is sometimes re-
quired to obtain optimal results (as in sk). To-
gether with the results in Figure 3, this suggests
that cross-teaching can play a crucial role in facil-
itating cross-lingual transfer.

Visualizations of Sentence Embeddings We
find that cross-teaching significantly reduces the
separation between different tokenizations in the
sentence representations of certain languages. Fig-
ure 3 shows the distribution of sentence represen-
tations produced by our two tokenizers. In the
baseline, BPE-tokenized sentences are clearly sep-
arated from (parallel) SP-tokenized sentences; in
the Multi-Sub setting we observe less separation,
although distinct clusters of BPE and SP inputs
are still clearly visible. By contrast, in the cross-
teaching setting, there is significant overlap be-
tween the representations of BPE and SP inputs.

10cs training data taken from Sevcı́ková et al. 2007, sk test
data from Piskorski et al. 2017, and pt/gl training and test
data from Garcia and Gamallo 2014



gl (src) en (ref.) sub-sep SDE multi-sub+cross-teach

Se queres saber so-
bre o clima, pre-
guntas a un cli-
matólogo.

If you want to know
about climate, you
ask a climatologist.

If you want to know
about climate, you’re
asking a college
friend.

If you want to know
about climate, they
ask for a weather.

If you want to know
about the climat, you
ask a climatologist.

Table 8: Example of translations of the same source sentence from gl→en test set with different models.

This suggests that cross-teaching serves to elim-
inate “monolingual” subspaces (that is, subspaces
representing a single tokenization) in favor of rep-
resenting all input languages in the same joint
space. On the basis of this result, we argue that
cross-teaching is an effective technique for in-
creasing the degree of multilinguality in a trans-
lation model.11

5 Qualitative Analysis

We list translations for the baseline sub-sep and
SDE models along with our Multi-Sub model in
Table 8. While sub-sep results in an entirely unre-
lated translation of the gl word climatólogo, SDE
produces a related word weather. Multi-Sub, how-
ever, produces an accurate translation of the word
which is climatologist.

6 Related Work

Several techniques have been proposed to improve
lexical representations for multilingual machine
translation. Zoph et al. (2016) propose to first train
a HRL parent model, then transfer some of the
learned parameters to the LRL child model to ini-
tialize and constrain training. Similarly, Nguyen
and Chiang (2017) pair related languages together
and transfer source word embeddings from parent-
HRL words to their child-LRL equivalents. John-
son et al. (2017); Neubig and Hu (2018), on the
other hand, learn a joint vocabulary over several
languages and train a single NMT model on the
concatenated data. Gu et al. (2018) introduce a la-
tent embedding space shared by all languages to
enhance parameter sharing in lexical representa-
tion. Wang et al. (2018); Gao et al. (2020) use a
similar idea but use character n-gram encodings
(SDE) instead of the conventional subword/word
embeddings. By contrast Multi-Sub does not in-
volve any architectural changes and improves the

11In this respect, cross-teaching has a similar effect to BPE-
dropout (Provilkov et al., 2020), which serves to eliminate
monolingual subspaces at the level of subword embeddings
(but recall our prior comments on the distinction between
BPE-dropout and Multi-Sub in Section 3.3).

representation of low-resource languages by train-
ing on multiple segmentations of the same corpus.

Subword-regularization methods (Kudo, 2018;
Provilkov et al., 2020) share the motivation of
alleviating sub-optimal subwords by exposing a
model to multiple segmentations of the same word.
However, our method is substantially different in
that (i) we use two completely different subword
algorithms with different vocabulary sizes (con-
tra Wang et al. 2021), and (ii) we do not rely
on expensive sampling procedures (contra Kudo
2018) or additional data to learn an LM. Especially
for low-resource languages, our method not only
improves translation quality but also enhances a
model’s cross-lingual transfer capabilities. Finally,
this simple architecture-agnostic technique can act
as drop-in improvement for existing methods.

7 Conclusion

This work introduces Multi-Sub training with
cross-teaching—a novel technique that combines
multiple alternative subword tokenizations of a
source-target language pair—to improve the rep-
resentation of low-resource languages. Our pro-
posed methods obtain significant gains on low-
resource datasets from multilingual TED-talks.
We performed exhaustive analysis to show that our
methods also increase the lexical and morpholog-
ical diversity of the output translations, and pro-
duce better multilingual representations which we
demonstrate by performing zero-shot NER by ex-
ploiting representations from a high resource lan-
guage. Multi-Sub training and cross-teaching are
simple architecture-agnostic steps which can be
easily applied to existing single or multilingual
neural machine translation models and do not re-
quire any external data.
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